Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
J. appl. oral sci ; 30: e20210359, 2022. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1365004

ABSTRACT

Abstract Regenerative approaches using mesenchymal stem cells (MSCs) have been evaluated to promote the complete formation of all missing periodontal tissues, e.g., new cementum, bone, and functional periodontal ligaments. MSCs derived from bone marrow have been applied to bone and periodontal defects in several forms, including bone marrow aspirate concentrate (BMAC) and cultured and isolated bone marrow mesenchymal stem cells (BM-MSCs). This study aimed to evaluate the periodontal regeneration capacity of BMAC and cultured BM-MSCs in the wound healing of fenestration defects in rats. Methodology: BM-MSCs were obtained after bone marrow aspiration of the isogenic iliac crests of rats, followed by cultivation and isolation. Autogenous BMAC was collected and centrifuged immediately before surgery. In 36 rats, fenestration defects were created and treated with suspended BM-MSCs, BMAC or left to spontaneously heal (control) (N=6). Their regenerative potential was assessed by microcomputed tomography (µCT) and histomorphometry, as well as their cell phenotype and functionality by the Luminex assay at 15 and 30 postoperative days. Results: BMAC achieved higher bone volume in 30 days than spontaneous healing (p<0.0001) by enhancing osteoblastic lineage commitment maturation, with higher levels of osteopontin (p=0.0013). Defects filled with cultured BM-MSCs achieved higher mature bone formation in early stages than spontaneous healing and BMAC (p=0.0241 and p=0.0143, respectively). Moreover, significantly more cementum-like tissue formation (p<0.0001) was observed with new insertion of fibers in specimens treated with BM-MSCs within 30 days. Conclusion: Both forms of cell transport, BMAC and BM-MSCs, promoted bone formation. However, early bone formation and maturation were achieved when cultured BM-MSCs were used. Likewise, only cultured BM-MSCs were capable of achieving complete periodontal regeneration with inserted fibers in the new cementum-like tissue.

2.
J. appl. oral sci ; 24(4): 376-382, July-Aug. 2016. graf
Article in English | LILACS, BBO | ID: lil-792596

ABSTRACT

ABSTRACT Aging negatively affects bone/titanium implant interactions. Our hypothesis is that the unbalance between osteogenesis and adipogenesis induced by aging may be involved in this phenomenon. Objective We investigated the osteoblast and adipocyte differentiation of mesenchymal stem cells (MSCs) from young and aged rats cultured on Ti. Material and Methods Bone marrow MSCs derived from 1-month and 21-month rats were cultured on Ti discs under osteogenic conditions for periods of up to 21 days and osteoblast and adipocyte markers were evaluated. Results Cell proliferation, alkaline phosphatase (ALP) activity, extracellular matrix mineralization and gene expression of RUNX2, osterix, ALP, bone sialoprotein, osteopontin, and osteocalcin were reduced in cultures of 21-month rats compared with 1-month rats grown on Ti. Gene expression of PPAR-γ , adipocyte protein 2, and resistin and lipid accumulation were increased in cultures of 21-month rats compared with 1-month rats grown on the same conditions. Conclusions These results indicate that the lower osteogenic potential of MSCs derived from aged rats compared with young rats goes along with the higher adipogenic potential in cultures grown on Ti surface. This unbalance between osteoblast and adipocyte differentiation should be considered in dental implant therapy to the elderly population.


Subject(s)
Animals , Female , Rats , Osteoblasts/physiology , Titanium/chemistry , Aging/physiology , Dental Implants , Adipogenesis/physiology , Mesenchymal Stem Cells/physiology , Osteogenesis/physiology , Surface Properties , Gene Expression , Cells, Cultured , Age Factors , Cell Proliferation/physiology , Alkaline Phosphatase/analysis , Real-Time Polymerase Chain Reaction , Lipids/analysis
3.
J. appl. oral sci ; 23(6): 623-628, Nov.-Dec. 2015. graf
Article in English | LILACS, BBO | ID: lil-769815

ABSTRACT

ABSTRACT The ability of hemostatic agents to promote bone repair has been investigated using in vitro and in vivo models but, up to now, the results are inconclusive. Objective In this context, the aim of this study was to compare the potential of bone repair of collagen sponge with fibrin glue in a rat calvarial defect model. Material and Methods Defects of 5 mm in diameter were created in rat calvariae and treated with either collagen sponge or fibrin glue; untreated defects were used as control. At 4 and 8 weeks, histological analysis and micro-CT-based histomorphometry were carried out and data were compared by two-way ANOVA followed by Student-Newman-Keuls test when appropriated (p≤0.05). Results Three-dimensional reconstructions showed increased bone formation in defects treated with either collagen sponge or fibrin glue compared with untreated defects, which was confirmed by the histological analysis. Morphometric parameters indicated the progression of bone formation from 4 to 8 weeks. Additionally, fibrin glue displayed slightly higher bone formation rate when compared with collagen sponge. Conclusion Our results have shown the benefits of using collagen sponge and fibrin glue to promote new bone formation in rat calvarial bone defects, the latter being discreetly more advantageous.


Subject(s)
Animals , Male , Bone Regeneration/drug effects , Collagen/pharmacology , Fibrin Tissue Adhesive/pharmacology , Hemostatics/pharmacology , Osteogenesis/drug effects , Disease Models, Animal , Fracture Healing/drug effects , Rats, Wistar , Reproducibility of Results , Skull/drug effects , Skull/injuries , Swine , Time Factors , Treatment Outcome , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL